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Abstract 
A general requirement of mine site closure is that waste rock dumps, generated by the excavation of large 
quantities of overburden in open cut mines, should be rehabilitated to create stable, sustainable landforms.  
However, many factors affect the success or failure of attempts to stabilise and rehabilitate waste rock dumps. 
Dump “failure” (where major erosion has occurred at points on the landform) is often associated with the erosion of 
unstable and dispersive materials.  The presence of these materials in waste rock dumps commonly results in the 
development of tunnel erosion, causing failure of berms at points where tunnels develop, creation of relatively 
unsafe landforms with widespread tunnels immediately below the soil surface, development of large gullies once 
tunnels collapse, and instability of rock drains overlying dispersive materials.  This paper provides information on 
the factors leading to the initiation of tunnelling and the potential for both changes in spoil properties through time 
and waste dump design to influence tunnel erosion risk. Waste rock dump design and management practices are 
reviewed and recommendations are made on the usefulness of alternative prevention and control strategies for 
tunnel erosion of unstable and dispersive spoils. 
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Introduction 
Open-cut mining activities typically excavate large quantities of overburden or spoil to gain access to the mineral 
that is sought.  Overburden is usually placed in above-ground waste rock dumps, which are commonly 10-40 m 
high, and may have outer batter slopes at gradients of 25-40%.  This paper reports on current research directed at 
characterising the risk of tunnelling failure on the basis of soil physical properties and dump design.   
 
In general, the development of tunnel erosion is normally associated with the presence of dispersive materials.  
These materials are typically sodic (containing relatively high quantities of exchangeable sodium) causing them to 
break down when wet and release clay particles into solution – the process of dispersion.  However, tunnelling also 
occurs due to soil liquefaction which is normally associated with materials dominated (typically >70%) by silt and 
fine sand components.  In such materials, inter-particle bonds are so weak that they are readily destroyed by 
flowing water when the material is wet.  Moving water increases the area of weakness within the soil structure, 
causing tunnels and surface soil collapse above the tunnels.   
 
Stabilisation of mine site waste rock dumps is a major component of mine site rehabilitation works.  The presence 
of materials susceptible to tunnelling or piping a large impact on landform stability and rehabilitation as tunnel 
erosion tends to specifically impact on important structural elements of dumps such as berms and drains (Figure 1).  
Damage can then result either directly from the failure of those structural elements and the discharge of 
concentrated flows onto slopes below, or from the expansion of tunnels and their eventual collapse to form large 
gullies (Figures 2) (Schafer and Tragmar 1981).  The presence of tunnel erosion also typically means that site 
remediation and stabilisation are extremely difficult, and that erosion problems are likely to be particularly 
persistent, showing little tendency for armouring and natural stabilisation.   
 
Factors Involved in Tunnelling 
Material properties 
Soil materials susceptible to tunnel erosion (and selected for study) broadly fall into three main groups: (a) non-
saline sodic, (b) saline sodic; and (c) non-saline, non-sodic, silty materials.  These groups have distinctly different 
patterns of tunnel erosion under field conditions and hence, will require different management strategies.  For 
classification purposes, measurements were taken on all materials collected from 5 sites for electrolyte content 
(EC), exchangeable cations, particle size distribution (clay, silt, fine and coarse sand categories) and clay 
mineralogy (using X-ray diffraction).  A total of 5 materials from each site were tested covering a wide range of 
material properties (Table 1). 
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Figure 1.  Tunnel developed from a berm on a waste rock dump constructed of sodic spoil. 

 
 
 

 
Figure 2.  Tunnels collapse forming a large gully. 

 
 

Table 1.  Summary of material properties used in testing 
Mine site EC (mS cm-1) ESP (%) Sand (%) Silt (%) Clay (%) Mineralogy 
Coppabella 0.1-1.9 20 - 36 51 - 90 6 - 21 5 - 34 Quartz, Kaolinite 
Jundee 0.06 – 0.76 10 - 35 44 - 78 4 - 42 17 – 33 Quartz, Kaolinite 
Higginsville 7.5 – 12.8 38 - 56 15 - 31 7 - 10 59 – 76 Quartz, Kaolinite, Smectite, Ilite 
St Ives 4.9 - 46 25 – 89 19 - 83 8 – 60 8 – 22 Quartz, Kaolinite, Smectite, Ilite 
Telfer 0.1 – 1.9 3 – 7.2 40 - 68 26 - 54 5 - 12 Quartz, Kaolinite, Ilite 
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The Coppabella (central Queensland coalmine) and Jundee (central Western Australia gold mine) materials are 
largely non-saline, sodic, dispersive and mostly sandy.   
 
The Higginsville and St Ives (both from Western Australia Goldfields near Kalgoorlie) materials are largely saline 
and sodic.  This is to be expected for paleochannel materials in an environment where high salt levels are common 
in subsoils.  The predominantly clay materials from Higginsville contain various levels of quartz, kaolinite and 
smectite minerals.  The smectite component in some of these materials caused high levels of swelling during testing 
followed by shrinkage upon drying.  This swelling and shrinking cycle forms cracks, which appear to be a major 
pathway for water to move through these materials and initiate tunnels.  Dispersive clays, when wet, can be highly 
impermeable, and without water movement, tunnel formation is impossible.  The St Ives materials are highly sodic 
and saline, with salinity levels varying considerably.  The St Ives materials varied greater than the Higginsville 
materials with 1 markedly different from the other materials, being primarily a sandy material and non-dispersive. 
 
The Telfer (northern Western Australia gold mine) materials are non-saline and have relatively low sodicity.  Initial 
particle instability was only observed in samples with the highest ESP (only 7%).  The mineralogy of these 
materials consisted primarily of quartz, kaolinite and illite, with no trace of swelling smectites.  The tunnelling 
characteristics associated with this material are driven by liquefaction within the soil structure. 
 
Tunnel mechanisms 
There are a variety of mechanisms that influence the formation of tunnels within a material.  These include; rainfall 
seasonality, heterogenous surface layer infiltration, exits/entrances, hydraulic conductivity of subsurface horizons 
and dispersion of soil layers subject to water flow (Couch et al., 1986).  In climates with distinct seasonality of 
rainfall, the action of drying and wetting cycles has an important effect on soil structure.  Main processes affected 
are the slaking of soil exposed to evaporative drying and the formation and closure of shrinkage cracks (particularly 
associated with swelling clay materials).  Shrinkage cracks generated by soil drying provide inlet areas for water, 
and expose dispersive sub-surface clays to free water.   
 
Crouch (1976) lists a set of processes that can lead to tunnelling.  They are: 
• Surface cracking due to desiccation 
• Rapid infiltration down the cracks, and super-saturation of a subsurface layer 
• Dispersion of the super-saturated layer 
• Movement of the dispersed particles in soil water due to a hydrostatic gradient that produces lateral flow.  

Generation of a “subsurface rill” or tunnel results from this movement.  Over time and with increased flow 
volumes the tunnel will increase in size and may merge with other tunnels.  The size of tunnels is limited by the 
strength of the upper layer, which will collapse once the tunnel achieves a certain size to form a tunnel-gully. 

• Expansion of the tunnel inlet and outlet.  Tunnel inlets typically start as small holes generated below subsurface 
cracks. Progressive collapse may cause this inlet point to become a large depression although the tunnel inlet 
size may remain small depending on the volume of water concentrated at this point. 

 
Tunnel outlets are formed through the continued progress of tunnelling below the surface layer finding an outlet (an 
existing gully or point of weakness such as surface cracking).  In some cases, exits form as “blowholes” resulting 
from the hydraulic pressure forcing its way through the surface layer at a lower point in the landscape.  Crouch 
(1976) reports the work of Downes (1946) who found that infiltration rates into the surface of tunnelling areas can 
vary by up to 50 times (Floyd 1974). A significant impact on the formation of tunnels in an earthwork construction 
or in the field is any factor allowing concentration of water and causing uneven infiltration rates into the soil.  
 
Features identified as causing a concentration of water to influence tunnel formation include: 
• soil cracks formed by construction works or wetting drying cycles;  
• animal burrows (rabbit burrows are mentioned significantly in many articles from NSW agricultural regions, 

although it is uncertain as to which came first-the tunnels or the rabbits (Floyd 1974)), 
• holes from root system and rock outcropping and their removal; and  
• small depressions. 
 
Many of these features exist on mine waste rock dumps, with added influences caused by waste dump construction 
design and requirements, for example the construction of level berms.  Constructions formed through the use of 
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differing materials (particularly with differing hydraulic conductivities) on the surface may also serve to increase 
subsurface flow levels at certain points of the construction.  Increasing infiltration rate at one point will drain the 
ponding water on a nearby less permeable material increasing the flow through the area of higher permeability.  
Floyd (1974) found tunnelling to be less severe for bank construction when graded banks were constructed, and 
where ponding did not occur. 
 
Waste rock dump design 
During initial site visits, a strong difference was observed between the patterns of tunnel erosion at Coppabella 
(non-saline/sodic) and Higginsville (saline/sodic) Mines.  At Coppabella, tunnels were extremely frequent on waste 
dump batter slopes, tended to be relatively small (up 50 cm diameter), and developed at depths of 50-70 cm in the 
soil.  In contrast, at Higginsville, tunnels developed almost entirely on dump tops and berms, were relatively large 
(up to a metre or more in diameter), and relatively infrequent (spacings of 50 m being common in some areas). 
 
When spoils are first excavated at Higginsville, they are actually non-dispersive, due to their high salt content.  
However, if leached, their salt content reduces, and they then become highly dispersive.  Therefore, leaching of salt 
from the spoil is a major factor in making the soil dispersive.  Most of the leaching occurs at points where water is 
ponded - on dump tops and berms.  This ponded water then also provides the driving force for the tunnel erosion 
process.  So, where spoils are initially saline / sodic, ponding water on them is a guaranteed way to create tunnels.  
This indicates that the traditional water-retaining waste dump profiles (flat tops, berms), are a major cause of the 
tunnelling of these sorts of spoils.  
 
For non-saline / sodic spoils like Coppabella, clearly the tunnelling process can start immediately, and at any point 
on the landscape, and this seems to be consistent with the observations.  For saline / sodic spoils it is plain that 
waste rock dump design is a major issue for tunnelling on this group of spoils and there are a range of issues to 
consider for spoil instability.  Quirk and Schofield (1955) and many others since that time (Quirk, 2001) have used 
plots of ESP (sodicity) against Electrolyte Concentration (EC) (salinity) to define regions of stable versus reducing 
hydraulic conductivity or soil flocculation versus deflocculation/dispersion.   
 
Results and Discussion 
In general, the management options available to mine sites that excavate materials susceptible to tunnelling are to 
either: (a) avoid the problem by ensuring that tunnelling materials are not exposed to runoff and shallow drainage: 
or (b) remediate the problem by applying some form of amendment.  Avoidance of the problem is undoubtedly the 
easier and most cost-effective option, but relies on mine site management being able to accurately identify 
materials that will be susceptible to tunnelling.  Laboratory tests for the identification of dispersive materials have 
been developed and tested, but there has been little research on relationships between test results and the 
development of tunnel erosion.   
 
In dealing with mine spoils, it must be emphasised that literature on characterisation procedures, and associated 
prediction/modelling of erosion processes, suffers from the central assumption that 'as mined' materials have 
properties that do not change after placement in dumps.  This is a severe weakness for many Australian mine spoils 
that are saprolitic (rather than pedological) in nature and are commonly saline, sodic, at extremes of pH and devoid 
of biological materials/activity.  In order to predict the mid to longer-term performance of dumps, it is essential that 
the inevitable microstructural, chemical and mineralogical evolution of wastes can be predicted and the impact of 
these changes on erosion hazard determined. 
 
Remediation of materials susceptible to tunnelling is typically seen as relying on application of gypsum to remove 
exchangeable sodium and to increase the stability of the material of concern (Sumner, 1993).  Gypsum applications 
were tested on 2 materials from Coppabella (CPS1 and CPS5).  These samples were selected for testing as CPS1 
varied greatly in behaviour to the other four Coppabella samples during testing and CPS5 provided the highest 
sediment loads in leachate during earlier testing.  
 
Application rates equivalent to 5, 10 and 20 t ha-1 of gypsum were thoroughly mixed into 100 mm deep samples of 
spoil.  Treated samples and a control sample were then assessed using the long leaching column tests measuring 
infiltration rates, leachate Electrical Conductivity (EC) and sediment concentrations in the leachate.  Bulk densities 
were kept constant during this test. 
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To test long-term persistence of gypsum effects, a total of approximately 1900 mm depth of deionised water was 
leached through samples with 5 t ha-1 gypsum before the reduction in soil EC caused by the leaching resulted in 
some dispersion, indicated by the leachate becoming cloudy due to the presence of dispersed material.  In 
agriculture, gypsum applications commonly need to be repeated a number of times before soil Exchangeable 
Sodium Percentage (ESP) is reduced to a level such that the soil remains stable. 
 
Compaction trials were conducted using long leaching columns for all materials supplied by Telfer.  Two levels of 
compaction were applied to each material, consisting of: (a) loosely placing the material to a depth of 100 mm, and 
(b) heavily compacting material to a depth of 100 mm.  Bulk density of the variously compacted materials was 
measured, and then an initial leaching trial was run over 24 hours to assess infiltration rates and leachate sediment 
levels. 
 
Design options to control or avoid tunnel erosion problems on waste rock dumps have generally not been 
considered.  From the outset of this research, it was considered quite likely that some designs that are currently 
widely used may create surface and sub-surface water pathways that actually increase the potential for tunnel 
erosion to develop.  Equally, it should be possible to design landforms in such a way that potential for tunnel 
erosion is minimised. 
 
Conclusions 
This research has highlighted a number of issues related to the assessment of the risk associated with tunnelling 
problems on a mine site.  Irrespective of the method by which tunnels form, the project has indicated strong 
interactions between the design of constructed landforms and the development of tunnel erosion.   Firstly, it has 
shown the importance of soluble salt content in some spoils, and the need to manage salt content to maintain 
stability.  Where water is ponded over saline sodic spoil, with leaching of salt by the ponded water, resulting in 
reduced soluble salt, increased dispersion, and development of tunnel erosion.  For non-cohesive materials, long 
durations of ponding are also a major factor in developing tunnel erosion.  Although retention of rainfall and runoff 
water on constructed landforms is widely considered to be highly desirable, in practice there is a range of situations 
where ponding of water is a recipe for disaster.   Secondly, the project has shown the existence of effectively two 
mechanisms for tunnel erosion (movement of dispersed clay and also movement of non-cohesive fine particles), 
where previously tunnel erosion was attributed solely to clay dispersion.  This finding has been supported by 
considerable field observation, and means that the range of materials at risk from tunnel erosion is greater than 
initially considered.  
 
The three groups of materials susceptible to tunnel erosion are saline sodic, non-saline sodic, and fine, non-sodic 
materials of low cohesive strength.   
 
Saline sodic materials are, at least initially, stable.  Therefore, it should be acceptable to place these materials 
relatively close to the surface of a waste dump, provided leaching (over the long term) is limited.  Leaching of salts 
and conversion of these materials to a non-saline sodic and dispersive condition is highly undesirable.  This means 
that (a) prolonged ponding of water at any point on the landscape should be completely avoided as it will accelerate 
salt leaching and tunnel formation; and (b) deep drainage below the topsoil layer should be minimised so that salt 
leaching is not significant. 
 
Non-saline sodic materials will be susceptible to tunnel erosion as soon as they are placed on or near a waste dump 
surface.  Options for constructing stable landforms of this type of material are limited.  Where stable topsoil can be 
placed over the spoil, there is still potential for water draining below the topsoil to cause tunnel development.  
Options to avoid or minimise the potential for tunnel development in this type of material include: 
• avoiding placing the material closer than 1 m to the surface (if possible); 
• placing at least 0.5 m of stable (non-cracking) topsoil over the spoil; 
• keeping waste dump outer batter gradients very low (as low as 5% if possible), so that gravitational forces 

aiding tunnel formation are drastically reduced; 
• avoiding ponding of water; and 
• ensuring that cracks and other pathways for water to enter the spoil are minimised. 
There is also potential to use gypsum to stabilise these materials.   
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For non-saline, non-sodic materials of low cohesion, the major priority is to avoid prolonged ponding.  Deep 
drainage into the spoil from an overlying topsoil layer is not of concern, provided the water moves as unsaturated 
flow.  
 
The problem with existing unstable waste rock dumps is not only that erosion rates can, in some instances, be high.  
As well, unlike rocky materials, finer spoils susceptible to tunnel erosion are most unlikely to armour, or to have 
any mechanism by which erosion would be reduced over time.  Therefore, those relatively high rates of erosion can 
be expected to continue indefinitely.  For existing dumps subject to tunnel erosion, remediation and repair appears 
to be difficult in some cases and often impossible.  Access on waste rock dumps for appropriate equipment to 
perform remedial works (eg. to remove unstable material and replace it with a more stable spoil) is difficult and 
potentially dangerous due to the presence of existing tunnel-gullies and/or un-collapsed tunnels.  Therefore, the 
importance of early diagnosis of potential tunnelling problems (identifying potentially tunnel generating materials) 
and adoption of strategies to prevent long-term instability is essential for successful mine closure. 
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